
Preprint
UCRL-JC-141888

Image-Driven Mesh
Optimization

P. Lindstrom, G. Turk

This article was submitted to
SIGGRAPH 2001 the 28th International Conference on Computer
Graphics and Interactive Techniques, Los Angeles, CAI August 12-
17,2001

January 5,2001

U.S. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http:/ /www.doc.gov/bridge

Available for a processing fee to US. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reoorts@adonis.osti.gov

Available for the sale to the public from
US. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld._gov
Online ordering: httm / /www.ntis.eov/ordering;.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department's Digital Library

http: / /www.llnl.gov/ tid/Library.html

mailto:reoorts@adonis.osti.gov
http://www.llnl.gov

Image-Driven Mesh Optimization
Category: research

Abstract
We describe a method of improving the appearance of a low vertex
count mesh in a manner that is guided by rendered images of the orig-
inal, detailed mesh. This approach is motivated by the fact that greedy
simplification methods often yield meshes that are poorer than what
can be represented with a given number of vertices. Our approach
relies on edge swaps and vertex teleports to alter the mesh connectiv-
ity, and uses the downhill simplex method to simultaneously improve
vertex positions and surface attributes. Note that this is not a simpli-
fication method-the vertex count remains the same throughout the
optimization. At all stages of the optimization the changes are guided
by a metric that measures the differences between rendered versions of
the original model and the low vertex count mesh. This method creates
meshes that are geometrically faithful to the original model. Moreover,
the method takes into account more subtle aspects of a model such as
surface shading or whether cracks are visible between two interpene-
trating parts of the model.

1 INTRODUCTION
Due to the multitude of large geometric models that are available, a
major challenge is to create simple models that have the appearance of
the originals. One of the most commonly used method to produce such
simple models is to perform a sequence of local operations that reduce
the complexity of the model. Nearly all such methods use a greedy
approach to selecting these operations-the operation that is performed
next is the one that will change the model the least according to some
quality measure. Such greedy approaches often result in simplified
meshes that can be substantially improved by further changes to the
connectivity, the vertex positions and the texture coordinates of the
model. This paper describes a method for improving the appearance
of a mesh that uses rendered images of the original mesh to help guide
the changes.

Why is the greedy approach to simplification not optimal? A typical
greedy simplification algorithm uses an operation (edge collapse, for
instance) to reduce the vertex and polygon count of the model. Usu-
ally a priority queue is used to order the potential edges to collapse
according to the estimated change in geometric fidelity that each edge
collapse would make. At each step, the edge collapse with the low-
est cost is performed, then affected neighboring edges are re-evaluated
and re-inserted into the priority queue. Such algorithms essentially
create a path through the space of all possible meshes, where each new
node in the path is a mesh that has one fewer vertex than the preced-
ing node. Previous decisions in the selection of earlier meshes in this
path severely restrict the later meshes that can be reached. Consider the
analogous problem in 2D of simplifying a single (possibly many-sided)
polygon by performing edge collapses. If the original polygon is a de-
tailed approximation of a circle, then the best (in the mean error sense)
five-sided simplification is a regular pentagon. A single edge collapse
(the greedy step) cannot produce the best four-sided model, which is
a square. This same problem occurs frequently in 3D simplification.
For example, by extruding the circle and pentagon to cylinders, we are
faced with a similar problem in 3D where no combination of two edge
collapses yields an optimal model. Not only do such greedy algorithms
produce suboptimal geometry, but the mesh connectivity can often be
improved as well.

Our solution to this problem, mesh optimization, is to improve the
appearance of a simplified mesh by performing mesh operations that do
not alter the vertex count. These changes are guided by comparisons

between rendered images of the simplified mesh and the original, high-
detail mesh. Because we use comparisons between rendered images,
the color, texture, and normals of the mesh are automatically taken into
account in the optimization process. We describe our method in detail
after a review of previous work.

2 PREVIOUS WORK
Because our mesh optimization work is designed to improve upon
meshes that have been simplified, the mesh simplification literature is
the most closely related area to our work. This literature is too large to
cover in any detail, so in this section we will only review some of the
broad trends, paying particular attention to the order that each method
uses to decide which mesh operation is to be performed next.

In 1992, Schroeder and Lorensen described a simplification method
that repeatedly performs vertex removal in order to simplify a
mesh [17]. This is one of the earliest algorithms to repeatedly use a
single mesh operation (vertex removal in this case) to reduce the com-
plexity of a mesh. Their method makes a number of successive passes
through the list of mesh vertices, each time relaxing the tolerance on
which vertices may be removed.

The original paper on mesh optimization is that of Hoppe and his co-
authors [6]. Their goal was to improve the aggregate distance between
a given mesh and a set of 3D points P, and this process was designed to
improve the meshes from their earlier work on surface reconstruction
from unorganized points [5]. They also used this technique for simpli-
fying a mesh by creating the points P by densely sampling points on
an original mesh. Their approach is to perform edge operations (edge
swap, edge split, edge collapse) in a manner that is guided by a term
that measures the distance from the current mesh to the points P. Their
energy term is a weighted sum of the number of vertices, the distances
from the mesh to P, and an edge length term (the spring term). Their
optimization method selects an edge at random, performs one of the
three edge operations at random, and then uses conjugate gradient to
change the vertex positions in the neighborhood of the edge in order
to improve the fit to P. A random change is accepted if it reduces the
energy term.

Several researchers use a priority queue to determine the order of
local operations for simplifying a mesh. These priorities are based on
such measures as distance to points [7]. distance to planes [15], njni-
mizing a quadric function [3], and minimizing change in volume [9].
Perhaps most closely related to the optimization work in this paper is
using an image-driven priority queue to simplify a model [lo]. All
of these are greedy approaches, and therefore are all prone to creating
suboptimal meshes.

View-dependent simplification divides the simplification task into
two components [8, 12, 191. During the pre-processing stage, a se-
quence of simplification operations (e.g. edge collapse) are performed,
and a tree of interdependencies of these operations is also built. During
on-line rendering, information about the viewpoint is used to decide
which of the simplification operations should be performed. and this
determines the mesh to be displayed. Although we use rendered im-
ages from different viewpoints to perform optimization, the work pre-
sented in this paper is not a view-dependent simplification approach in
the sense that this term is used in the literature. In our approach, we
use rendered images during off-line optimization.

There have been several approaches towards incorporating color and
texture information into the simplification process. Hoppe uses addi-
tional terms in his energy measure to capture information about mesh

color [7]. Cohen et al. place restrictions on the deviation that texture
coordinates may undergo in order to prevent sliding of the texture [2].
Garland and Heckbert extended their quadric functions to incorporate
color and/or texture coordinates [4]. Lindstrom and Turk use an image
metric that unifies differences in geometry and surface properties, and
take into account both scalar attributes and texture content [lo].

3 OVERVIEW OF ALGORITHM
Our algorithm begins with two input meshes, the original detailed mesh
and a simplified version of this mesh that has the desired number of
vertices. It is unimportant what method is used to create the simplified
mesh, and we show results from several methods later. The user picks
the number of viewpoints to use (from six to twenty-four is typical),
and the algorithm creates this number of rendered images of both the
original and the simplified meshes. Then, using a method described in
detail later, an edge in the simplified mesh is selected for improvement.
The algorithm then attempts a number of changes to the mesh at and
around this edge to create a mesh whose rendered images are closer to
those of the original mesh. (A hardware-assisted method of rapidly up-
dating the rendered images will be described later.) Possible changes to
the mesh include moving two or more vertices, edge swapping, or even
a vertex teleport (moving a vertex between entirely different portions
of the mesh). Which of these changes are tried is based on how costly
each attempt will be relative to the likely improvement each change
will yield. When the method is done considering a particular edge, a
new edge is selected and the process repeats.

4 THE ENERGY FUNCTION
In this section we lay the groundwork for using comparisons between
images to steer the optimization of a model. Our measure of similarity
is based on the work by Lindstrom and Turk [lo] in which an image
metric is used to order a set of edge collapses. Their method, however,
uses geometry-based heuristics for positioning the vertices and and a
greedy method for choosing edge collapses that often yields a subopti-
mal connectivity. Our optimization method, on the other hand, uses the
image metric directly to determine the best vertex positions and what
changes to make to the connectivity. First we describe how multiple
images of the original and a simplified model are compared in order to
judge the similarity of the models. Then we explain how to efficiently
evaluate the metric during optimization.

4.1 Comparing Models Using Images
An image metric is a function over pairs of images that gives a non-
negative measure of the distance between the two images. While sev-
eral perceptually motivated image metrics exist, we will limit our dis-
cussion to the mean-square error (MSE) metric’ because of its compu-
tational efficiency and the convincing results it produces for our appli-
cation. We note that our image-driven optimization framework easily
allows other image metrics to be used, such as [1 1 . 141. As an example,
we have incorporated Bolin and Meyer’s perceptual image metric [I]
with our optimization method, but found it to give less pleasing results
than MSE in most cases. Even though some of our examples include
colored models, we compute a single luminance channel Y for each
image using the standard NTSC coefficients and measure only differ-
ences in luminance, which has worked well for all of our test models.

We cannot hope to capture the entire appearance of an object in a
single image. Ideally, we wish to capture the set of all radiance samples
that emanate from the surface of an object under all possible lighting
conditions. This is obviously not possible in practice. To capture a

~~

’Although MSE does not satisfy the hiangle inequality property of a metric,
we will use it only to determine whether one mesh is a better approximation
than another, for which triangle inequality is irrelevant. Many geometry-based
measures of similarity are likewise expressed as quadratic functions [6, 3.91.

Figure I: Twelve uniformly distributed views of a model. The viewpoints correspond to
the vertices of a regular icosahedron.

large collection of radiance samples, we render images from a number
of different camera positions, typically between six and twenty-four,
around the object and apply the image metric to this entire set of images
(Figure 1). Our measure of similarity can then be computed as follows:
Given two sets of 1 luminance images Yo = { Y f } and Y1 = { Y i } of
dimensions m x n pixels, the mean-square difference is

While the number of views required and the “optimal” placement
of viewpoints vary between objects, we have chosen to use a uniform
distribution of views, which has worked well for all models that we
have optimized so far. For each view, we place a single light source
near the viewer to illuminate the front of the model. For the results
presented in this paper, we used 20 images of 256 x 256 pixels each
during optimization, and placed the model on a gray (50% intensity)
background.

4.2 Definition of Energy Function
In the context of optimization, we will refer to the quality measure pre-
sented in the previous section as the energyfinction E (cf. [6]). That
is, E is a function of the rendered images 9 of some ideal model M
that we wish to reproduce, and images Y of the current model M be-
ing optimized. In order to make the optimization procedure efficient,
we need a fast method for computing image differences. Whenever a
new mesh is produced by making an oprirniurtion move, i.e. moving
some of its vertices or changing its connectivity, we must conceptually
use the image comparison procedure described above, which requires
rendering the entire model from multiple viewpoints, capturing the im-
ages, and applying the image metric to each image to measure the vi-
sual quality of the mesh. In practice, however, we can accelerate this
process by updating the images incrementally and evaluating the image
metric over the affected pixels only, assuming the difference between
consecutive meshes is small. In this section, we describe a fast method
for evaluating the change in energy without having to iterate over the
entire triple sum in Equation 1.

The absolute energy E is useful for comparing the relative qual-
ity of two meshes and determining when the optimization converges.
However, we are often more interested in the change in energy A E
incurred by an optimization move. A beneficial move results in a neg-
ative change as a low-energy state is preferred. Thus, instead of com-
puting absolute energies, we will focus on how to evaluate changes in
energy efficiently. The procedure described here generalizes the com-
putation of edge collapse energies described in [lo] to arbitrary con-
nectivity and geometry changes.

Let 3, Y, and Y’ be the collections of images of the target model M,
the current model M , and the model M’ after performing an optimiza-

2

tion move on M , respectively. Then the change in energy associated
with the move is:

AE = E(M’) - E(M)

Note that any pixel satisfying Yh;j = viij makes no contribution to
AE. In fact, this holds for the majority of pixels due to the spatial lo-
cality of the optimization moves used in our algorithm. Each optimiza-
tion move entails replacing a small set of triangles T with T’. These
two sets may be topologically equivalent, but their geometric extents
may differ whenever their supporting vertices are moved. Thus, the
only pixels that can differ between the images y and Y’ when T is
replaced with T’ are the ones covered by T U T’. For efficiency, we
compute for each view h an axis-aligned bounding box Rh = zh x Jh
in screen space around these triangles, which is a conservative esti-
mate of the af€ected pixels. By visiting this smaller set of pixels only,
we obtain an expression for AE that is faster to evaluate:

4.3 Fast Image Updates
So far, we have described how to evaluate AE given sets of images
3, Y , and Y’. We will now explain how to efficiently generate these
images. Our approach is to maintain images Y of the most optimal
model found so far and, for each optimization move considered, make
incremental changes to these images to produce Y‘. If the move is
beneficial, Y is replaced by y’. As pointed out in the previous section,
only parts of Y‘ need to be generated, and we describe in this section
data structures and algorithms for efficiently querying what portions
of the mesh to render in order to produce the necessary subimages.
Our approach to fast image updates has been tailored to systems with
graphics hardware, and our implementation uses OpenGL and the pixel
buffer extension for hardware-assisted off-screen rendering.

The optimization algorithm begins by rendering images 3 of the
target model and stores these away. In addition, we render images
Y of the coarse model that is to be optimized, which are generated
from scratch only once and are subsequently updated via small local
changes. Since the evaluation of the energy function, and consequently
the generation of Y’, resides in the innermost loop of the optimiza-
tion algorithm, it is imperative that this step is efficient. In particular,
we need a fast algorithm for replacing a small set of triangles T with
T‘, without having to re-render the entire mesh. This is conceptually
done by “un-rendering” the triangles T , revealing any obscured parts
of the surface, and then rendering the replacement triangles T’. Un-
fortunately, un-rendering is not commonly supported in hardware, but
we can limit the number of triangles that have to be rendered by ex-
ploiting spatial locality and subdividing the image space into triangle
buckers. We maintain a pair of hash tables, indexed by the triangle
identifiers, for each pixel row and column (Figure 2). This data struc-
ture, explained in detail below, allows us to perform rectangular range
queries to efficiently cull away most triangles that do not intersect the
region Rh = zh x Jh in each view h that contains the triangles T UT’.
The result of the range query is a set TR,, that is guaranteed to contain
all triangles, visible and obscured, that overlap the region. Since the
procedure is the same for all views h, we will omit the subscript h in
the following paragraph for the sake of readability.

Triangle culling is accomplished by computing the union of the ver-
tical buckets TI = U;€rT; and the horizontal buckets TJ = UjEjTj
spanned by R, and then letting TR = TI n TJ be a conservative (but

Figure 2: The mangle bucket data sbuchue. The hiangles of the model are projected onto
the two image axes and are maintained in hash tables for all pixel rows and columns. This
data structure allows for all mangles TR (shown in blue) that intersect the rectangular
region R surrounding the triangles T U T’ to be accessed quickly. The set of uiangles
T = rrwl1 surrounding a single vertex v is here shown in red. We f i ~ d TR by computing
the intersection of the hiangles Tr (magenta) and the biangles TJ (preen).

generally tight) estimate of the set of triangles contained in R. We ac-
celerate the computation of unions by maintaining an additional set of
tables AT, = T; \ T;-I that are the set differences between consec-
utive pixel columndrows). That is, AT; contains the triangles whose
left-most vertex is in column i. Then we can rewrite TI as a union
of disjoint sets Tmin I U ATmin I + I U . * . U AT,,, I . In general, the
hash tables AT, are considerably smaller than the tables Ti. The in-
tersection TR can then be computed in linear time by associating a
“time stamp” with each triangle. Prior to computing TR, a unique time
stamp is chosen. While building the set TI , all triangles encountered
are marked with the new time stamp. As TJ is traversed, only the
triangles with the given time stamp are added to TR.

To replace T with T‘, we first clear each region Rh in which these
sets of triangles are contained. We then render the triangles TR,, \ T ,
i.e. all triangles in Rh except those we wish to un-render. We complete
the operation by rendering the set T’, producing the images y’, which
then allows us to evaluate AE. The use of these data structures to cull
away triangles increased the overall speed of the algorithm by a factor
of six for the bunny model in Color Plate la. For optimization with 20
views, 75-100 evaluations of AE can be made per second.

5 OPTIMIZATION PROCEDURE
Mesh optimization can be described as a process of searching the space
M of all possible meshes for the mesh that minimizes some given met-
ric, subject to a set of constraints. In this paper, the goal of optimization
is to produce a model with a few number of triangles that is visually
similar to a target model with a larger number of triangles. In contrast
to mesh simplifiaion algorithms such as [IO] and the mesh optimiza-
tion algorithm by Hoppe et al. [6], which are also driven by this goal,
we will assume that an already simplified mesh is provided, which is
used as a starting point in our optimization method, and which we seek
to improve with respect to some measure of visual similarity in rela-
tion to the target model. The optimization is constrained by fixing the
number of vertices in the coarse mesh, although we allow its vertices
to move and its connectivity to change.

The space of all meshes that we seek to explore can be parame-
terized in terms of the mesh connectivity, geometry, and surface at-
tributes such as colors, normals, and texture. Formally, we define a
mesh M = (K, X, S) as a triplet consisting of a simplicial complex
K that defines the connectivity, a set of vertex positions X that define
the geometry, and a set of surface attributes S. We distinguish between
the topological entity E V and the corresponding geometric realiza-
tion 4 (w) = x E X c R3 of a vertex. Each attribute is bound to
a vertex v, a triangle t , or a corner (v, t) formed by v and one of its
incident triangles t. While the geometry and surface attributes consid-
ered here are continuous parameters, the mesh connectivity is discrete.
To optimize both, we will take an approach similar to that of Hoppe

3

,-----. /-----.

Figure 3: The simplex operators LsJ and [si.

et al. [6] by using a two-level nested optimization; an inner, continu-
ous optimization in which vertices and surface attributes are modified
while fixing the connectivity, and an outer, discrete optimization in
which simple, atomic changes to the connectivity are made. Our gen-
eral approach is to to select a set of edges in the mesh to improve as
suggested by an oracle, interleaved with a sequence of randomly cho-
sen edges. This oracle (described in detail later) identifies edges that
may be the cause of large differences between the images of the orig-
inal and current mesh. For each chosen edge, we try a sequence of
connectivity moves of varying complexity, and optimize a small set of
vertices in the neighborhood of the edge until the connectivity move
results in a decrease in the energy function.

In addition to the use of an oracle to guide the optimization, ver-
sus random descent, our optimization method differs from Hoppe et
al.'s [6] in several ways. First, we do not use optimization to simplify
a mesh-we use it to improve a low vertex count mesh that was pro-
duced by any mesh simplification method. Second, our optimization
is not guided by a geometric measure of distances, but rather by im-
age differences. By using an image metric to guide optimization we
can capture all of the relevant factors that make up the appearance of
a mesh without explicitly creating an energy term for each one, We
thus avoid the tricky issue of how to balance such factors as geometric
distance, color, and texture against one another. Third, the method we
use to optimize vertex positions is entirely different from the conju-
gate gradient approach used by Hoppe et al. Finally, our selection of
which operation to perform upon an edge is not random, but is decided
based on which operation would result in a non-negligible improve-
ment to the mesh. Although our work owes a debt to Hoppe et al.'s
pioneering technique, we claim that our method is as different from
their approach as most of the dozens of published mesh simplification
methods are from one another.

In the remainder of this section, we will first describe the low level
details of the continuous and discrete optimization, and then conclude
by discussing the strategy for choosing connectivity moves and the set
of edges to optimize. In describing the algorithm, we will make fre-
quent use of the two simplex operators 1.1 (the n - 1-simplices that
make up an n-simplex s) and 1.1 (the n + 1-simplices that s is a subset
of) [9]. Figure 3 illustrates these simplex operators.

5.1 Continuous Optimization of Mesh Geometry
In this section we will explain how to optimize the geometry of a small
portion of a mesh. The goal of this optimization is to improve the visual
appearance of the mesh by making a series of small adjustments to the
vertex positions, such as lengthening a protrusion, smoothing out un-
desired wrinkles and bumps on the mesh, enhancing creases and other
fine details, etc. Specifically, given a mesh with a fixed connectivity
and a subset V of its vertices, we wish to move the vertex positions
X = d(V) simultaneously until a local optimum in the visual qual-
ity of the mesh is found. We can easily generalize this procedure to
include (continuous) surface attributes, in which case we simply con-
catenate vertex positions and attributes to form a single higher dimen-

sional parameter vector. For simplicity, however, we will restrict our
discussion to vertex positions only.

Multidimensional methods for continuous optimization problems
fall into one of two categories: methods that make use of derivative in-
formation of the objective function in order to make an educated guess
about where, or at least in what direction, the minimum lies, and slower
methods that rely on function evaluations only. Unlike in [6] , where the
energy function is a closed form quadratic expression, our energy func-
tion is given by discrete image differences that depend non-trivially
(although generally smoothly) on the input parameters (the vertex po-
sitions and attributes). Therefore, we use an optimization procedure
that relies only on sampling the energy function itself. We have cho-
sen to use the downhill simplex method for this task because it is easy
to implement and generally requires only a small number of function
evaluations before converging on a minimum [13]. This method takes
as input n + 1 vectors that specify the vertices of an n-simplex, evalu-
ates the function at these vertices, and proceeds by making a sequence
of moves, such as reflections, contractions, and expansions, which are
chosen based on the current function values at the vertices of the sim-
plex. The energy function is then evaluated whenever a vertex in the
simplex is moved. Near a local minimum, the simplex contracts until
the function values become sufficiently close. Thus, by tracking the
hyper-volume of the simplex, which always expands or contracts by a
power of two, we can estimate when a minimum has been found..

To apply the downhill simplex method to our problem, we begin
by constructing a basis for the set of m mesh vertices V that we
wish to optimize, with positions X = { x i } z l . Even though the
vertices need not be related geometrically or topologically whatso-
ever, we will assume that they are confined to a small neighborhood
in the mesh. For example, if m = 4 (a number of vertices fre-
quently optimized at a time in our algorithm), then we need to produce
n = 3m = 12 linearly independent 12-dimensional vectors (the wz-
coordinates for the four vertices). In addition to the vertex positions
X in M-the current mesh-which collectively make up an n-vector
p;f = (xT xT . . . x'f,) for one of the vertices in the initial sim-
plex, we can compute the remaining n vertices of the simplex
by choosing the unit coordinate axes in R" as a basis, and displacing
these vertices a small distance 6 from PO along each corresponding ba-
sis vector, i.e. p, = po + d&;, 1 5 i 5 n. Each such p i naturally
constitutes an initial estimate of the location of the optimal X, and it is
important that these estimates are reasonably close to the expected min-
imum for fast convergence. Consequently, we choose the magnitudes
of the displacements based on the local geometry around the vertex set
V. One might suspect that using local coordinate frames derived from
the geometry of the mesh (as opposed to using the arbitrary canonical
basis in R") would produce better and less biased offsets. However,
we have not found this to be true in practice.

Once the initial simplex has been formed, the continuous optimiza-
tion of X is performed by making repeated evaluations of the energy
function, until the process converges or a predefined limit on the num-
ber of evaluations is exceeded. We are currently imposing a limit of
32n evaluations to avoid spending too much effort on one small region
of the mesh.

So far we have not discussed how to choose the set of vertices V
to optimize as this decision is tightly linked to the outer, discrete opti-
mization, which we will discuss in the following subsection.

5.2 Discrete Optimization of Mesh Connectivity
Most simplified meshes can be improved greatly by optimizing the po-
sitions of their vertices alone. After a while, however, a point of di-
minishing returns will be reached as changes to the connectivity are
needed to further improve the mesh. This is generally required for one
of two reasons: either the local mesh connectivity is not appropriate
for its given geometry, which can be handed by making one or more
edge swaps; or the mesh tessellation is too fine or too coarse in relation
to the geometric complexity, which we address by transferring vertices

4

Figure 4: The edge swap, split, and collapse operations.

from one area to another using a vertex telepoR operation. These two
connectivity moves are described in the remainder of this section.

To explore the entire space of all meshes, we need a way of gen-
erating all possible mesh connectivities K for a given set of vertices
V. While the number of meshes with a fixed number of vertices is
finite, the vast majority of these meshes are not useful to us. Rather
than generating the complexes from scratch, this type of combinatorial
optimization is often done by making incremental changes to a good
initial estimate of the optimal connectivity. For manifold meshes of
fixed topological type, it can be shown that the edge swap operator
(Figure 4) is sufficient to produce any desired (manifold) connectivity.
While this operation is useful for making k ~ ~ a l changes to the connec-
tivity, it is not practical for distributing vertices over the mesh, as a
long chain of edge swaps in conjunction with geometry optimization
might be required to transfer a single vertex from one area to another.
Instead, we transfer vertices using a more global and atomic operation.
In essence, we need two atomic operations; one for vertex removal,
and one for adding a vertex to the mesh. To remove a single vertex,
we use edge collapse, while edge split is used to introduce a vertex
(Figure 4). These two operations, when used together, make up the
vertex telepoR operation. We chose edge split instead of vertex splii-
the dual of edge collapse-for two reasons: The edge split results both
in a uniquely defined connectivity and a unique position for the new
vertex (assuming the edge is split at its midpoint), whereas vertex split
requires not only the specification of which edges to “pull apart”, but
also how to assign coordinates and surface attributes to the new vertex.
Secondly, by using edge split we can treat the discrete optimization as
a sequence of improvements made to the edges of the mesh via a small
set of well-defined, atomic operations.

Recall that the discrete optimization is wrapped around an inner
continuous optimization. Whenever a connectivity move is made, we
optimize the geometry of the nearby vertices and accept the move if
it leads to a decrease in the energy function. We will discuss how to
choose what moves to make on what edges in the following sections,
and focus the remainder of this section on providing the final details of
how to perform each move.

Since the initial connectivity might be far from optimal, we would
like to avoid expending too much effort optimizing the geometry dur-
ing the early stages. Instead, we define for each connectivity move
multiple levels of geometry optimization, ranging from simple vertex
placement heuristics to optimizing successively larger sets of vertices
simultaneously. The idea is to allow an efficient but less accurate op-
timization strategy as long as the mesh quality can be improved, and
to employ higher degrees of optimization to fine-tune the mesh near
an optimum. Since the expected number of function evaluations is
roughly linear in the number of vertices to be optimized, we favor opti-
mizing small sets of vertices, and expand the sets whenever insufficient
progress is made. Table 1 contains the vertex set optimized for each
connectivity move. In addition to the edge swap, split, and collapse
operations, we include a “no-op” move which corresponds to optimiz-

connectivity
move

no-op
swap
split
collapse

optimiuuion level
0 1 2 3

LeJ LireiJJ ITleJlJ
le’] L L reti J 1 I le’J1 J

v i r v i i v u LrleJlJ
v v v U LLreljJ \ LeJ v

where AEtotol is the total change in energy accumulated from previ-
ous operations, which is reset to zero each time an edge is optimized.

%e time is measured in number of function evaluations instead of seconds
to ensure that the optimization is deterministic and reproducible.

5

This term is included to avoid attempting a new, possibly expensive
move when significant progress has already been made optimizing the
current edge.

By using a probabilistic algorithm to determine if a move should
be performed, several moves per edge may be attempted in addition to
0‘. We use a predetermined order of operations, and begin each at
the lowest optimization level. The most simple move-the no-op-is
attempted first. For each of its three optimization levels, we evaluate
Inequality 3, and attempt the corresponding operation if the condition
is satisfied. If insufficient progress is made (or if none of these oper-
ations is efficient enough to attempt), we conclude that the geometry
is locally optimal for the given connectivity, but allow for the possibil-
ity that the connectivity is not optimal with respect to the geometry of
the target model. Consequently, we attempt the next cheaper move; the
edge swap. Note that this move is only defined if e is manifold and does
not form a surface attribute boundary. If the edge swap optimization
does not significantly reduce the energy either, we investigate whether
the surface is locally undersampled by attempting a vertex teleport.

The vertex teleport operation begins by splitting e via insertion of a
vertex v at its midpoint. In order for the edge split to be accepted, it
must lower the energy enough to offset the expected increase in energy
associated with the “cheapest” edge collapse. While the exact value
for the lowest collapse energy is not always known ahead of time, we
estimate it using the lowest energy known when the previous edge col-
lapse was completed, and attenuate this energy over time to ensure that
one bad estimate does not entirely inhibit future teleport attempts. If
the edge split does not meet this energy constraint, we undo it and
proceed with the next optimization level. Otherwise, we must find an
edge to collapse commensurate with the decrease in energy provided
by splitting e.

Similar to several simplification algorithms, we maintain a priority
queue of edges, sorted by estimates of the edge collapse energies. As
with other operations, we associate an optimization level 1 with each
estimate. Initially, each collapse candidate is set to a default state of
zero energy and an optimization level of negative one. After a set of
vertices V is optimized, we reset the state of the edges 1 [[V i 1 J to the
default state and thus indirectly request that their energy estimates be
updated since they are likely to have changed. When an edge collapse
is requested, we dequeue the lowest energy edge. If its estimated en-
ergy is lower than the threshold given by the previous edge split, we
verify the estimate by collapsing and optimizing the edge at its given
optimization level. If, on the other hand, the threshold is exceeded, the
optimization level is incremented and a (hopefully) lower collapse en-
ergy is obtained. If the edge collapse is still not acceptable, the edge is
either reinserted into the queue, if the optimization level is lower than
the maximum, or is placed in a temporary list as its energy cannot be
lowered, allowing other edge collapses to be considered, and we repeat
the procedure.

In each iteration of this search for a valid edge collapse, we dequeue
the edge with lowest collapse energy and whose optimization level has
not reached the maximum. Due to this search order, from lowest to
highest collapse energy, the likelyhood of finding a valid edge collapse
decreases rapidly over time, and we terminate the search if the proba-
bility of success is lower than 0.34, i.e. using a 3a confidence interval.
This often preempts a futile search after a few seconds, which might
otherwise take a long time to complete.

If an edge is found whose collapse energy is lower than the thresh-
old, the teleport operation completes successfully. Otherwise, we con-
clude that there is no edge collapse compatible with the previous edge
split. Instead of undoing the split, however, we simply proceed by col-
lapsing the cheapest edge. While this will result in an energy increase,
it is a rare occurrence, but not necessarily a bad one as it allows for
occasional uphill moves that may get us out of local minima. We also
note that since the edges created in the previous edge split are candi-
dates for collapse, we should always in theory be able to collapse one
of these edges to revert back to the mesh as it was before the edge split.

5.4 Choosing Edges to Optimize
The outermost loop in our optimization method consists of choosing a
set of edges to optimize. Quite naturally, some edges are better candi-
dates than others, yet it is not immediately obvious how to rank them
to maximize the reduction in the energy function. We can, however,
order the edges by their porential for improvement by making use of
difference images. That is, for a given choice of image metric and as-
sociated difference images, our oracle determines which areas of the
mesh are high in energy, and which have a potential for large improve-
ment. We have found this oracle to be useful for detecting artifacts
in the mesh that can quickly be improved, which is an advantage over
methods like [6] that rely solely on random descent.

Periodically, we compute for each edge its potential energy by pro-
jecting its vertices onto the screen and summing up the pixel differ-
ences from blurred versions of the difference images, similar to [18].
The edges are then sorted by their potential energy, and the oracle rec-
ommends a small set of the highest energy edges for optimization. The
difference images are also used to measure the overall mesh energy,
which is useful for monitoring the progress of the optimization. The
user can then terminate the optimization when a satisfactory energy
level has been reached.

As alluded to above, the oracle does not always produce edges that
can be improved greatly. and sometimes outputs roughly the same set
of edges twice in a row. For this reason we interleave the set of edges
suggested by the oracle with a batch of randomly chosen edges. At the
beginning of each iteration, in which we optimize a total of 64 edges,
we balance these two sets based on the amount of progress made in the
previous iteration. The resulting optimization procedure is very flexi-
ble and adjusts quickly to changes in the mesh that are either beneficial
or detrimental.

6 RESULTS
The models discussed in this section were optimized on a 250 MHz
RlOOOO Silicon Graphics Octane with IMPACTSR graphics and 256
MB of RAM. We include examples of models that were optimized be-
tween a few minutes and up to six hours.

Our first example of mesh optimization is for a bunny model that
has been simplified using a variant of Rossignac and Borrel’s vertex
clustering method [16], for which we have removed all double-sided
faces, thus creating a few holes in the mesh. Color Plate la shows the
cluster-simplified model, and Plates Ib through l e show successively
improved models using the image-guided optimization. In addition to
smoothing out the rough surface, the optimization is able to close holes
in the mesh through properly chosen edge collapses. The percentages
in the captions correspond to the mesh energies relative to the model
in la.

Our mesh optimization method is also able to improve upon high-
quality geometric simplification results. Plates If and li show two
models that have been produces by memoryless simplification [9].
Plates lg and lj show the results after optimization. Notice that the
shapes of the ears are better captured by the optimized meshes. Plate lh
shows the original bunny model for comparison. Figure 5 shows the
mesh energy as a function of time for the models in Plates le, li, and
lj, while Figure 6 shows the (final) mesh energies for several levels-
of-detail of the bunny. These energies were computed using 24 views
that were all different from the ones used during optimization. No-
tice that our optimization method always outperforms Lindstrom and
Turk’s image-driven simplification method [lo] using this quality mea-
sure, regardless of which model is used as input to the optimization. In
fact, we have found that using the memoryless method followed by
optimization takes less time than using image-driven simplification to
reach the same energy level. However, the best meshes are obtained
when the two image-driven methods are used together.

Plate 2b is a textured frog model. This model is actually composed
of several connected components, with different components for the

6

Figure 5: Mesh eoergy as a function of time for various bunny models. Each curve cor-
responds to a different initial model, produced by the image-driven (101 (693 ve&e5),
memayless 191 (686 vertices), and venex clustering [161 (769 vertices) simplification al-
gorithms. The energy is measured relative to the model produced by the image-driven
simplitication method. and starts at 380% for venex clustering.

- & - m o w drnpYlkatiml (In.) +IMg.&ven (la)
-.-oplLnlWdhWiIM --.-@nbd Imn ld.

B

I

tca l0.W

Figure 6: Mesh energy for bunny models at different levels of detail. The lower two curves
correspood to the finaI, optimized models, whereas the upper curves correspond to the
models before optimization.

body, the legs and the eyes. Such "stuck together" models are com-
monly used in video games and in feature film special effects. Plate 2a
is a simplified frog model by the memoryless approach, and two prob-
lems are evident. The eyeball is sticking through a part of the head and
shows up as a white blotch. There is also cracking evident between the
legs and the body because these components were never joined in the
first place, and edge collapses around the places where they interpen-
etrate have caused a mismatch between components. Simplification
methods are not often used on such models because none of the geo-
metric quality measures recognize these problems. Our image metric
recognizes these problems, and Plate 2c shows the result of optimizing
the vertex and texture coordinates of the model from Plate 2a. Opti-
mization has fixed the cracks and the eyehead interpenetration prob-
lem.

Color Plates 3a-c show a memoryless simplification, the original,
and an optimized version of a textured torus. Notice that the large black
zeros are better placed after optimization, and that the long curved lines
are better matched. Insets in Plates 3a and 3c show the image differ-
ence between the coarse meshes and the original model of Plate 3b.

Our final example is a Gouraud shaded dragon (Plate 4b). We im-
proved a memoryless simplified version (4a) by optimizing both ge-
ometry and vertex normals (4c). By not constraining the normals to
unit length, the algorithm was sometimes able to artificially darken or
brighten regions without changing the surface normal direction. As a
result, details near the head, legs, and chest have been recovered in the
optimized model.

7 CONCLUSIONS AND FUTURE WORK
We have presented a method of improving the appearance of an
already-simplified model using optimization that is guided by images.
This is the first mesh optimization method that takes into account not
just the geometry of a model but also properties such as textures and
surface normals. This approach fixes problems in a simplified mesh
that simplification methods are insensitive to such as cracks between
surface parts and object interpenetration.

One avenue for future work is to explore the use of more
perceptually-based image metrics. A more unusual possibility is to
try optimizing a mesh that looks nothing like the target mesh. The two
meshes might be a horse and a tiger, and the result of the optimization
would then produce a morph between these two dissimilar shapes. Suc-
cess on this problem would probably require more global mesh moves
than those we have used to date. Other intriguing potential applications
of our method include remeshing, geometry compression, and design
and parameterization of bump or displacement maps.

References
[11 BOLIN, M., MEYER, G. A Perceptually Based Adaptive Sampling Algorithm. P m

ceedings of SIGGRAPH 98. In Computer Graphics Proceedings, Annual Conkr-
ence Series, 1998, ACM SIGGRAPH, pp. 299-309.

121 COHEN, J., MANOCHA. D., and OLANO. M. Appearance-Reserving Simplifica-
don. Proceedings of SIGGRAPH 98. In Computer Graphics Proceedings. Annual
Conference Series, 1998, ACM SIGGRAPH, pp. 115-122.

131 GARLAND, M. and HECKBERT, P. S. Surface Simplification using Quadric Error
Metrics. Proceedings of SIGGRAPH 97. In Computer Graphics Proceedings, An-
nual Conference Series, 1997, ACM SIGGRAPH, pp. 209-216.

141 GARLAND, M. and HECKBERT, I? S. Simplifying Surfaces with cdor andTexhue
using Quadric Error Metrics. In lEEE Visualirorion '98 Roceedings, October 1998,

[SI HOPPE, H., DEROSE. T., DUCHAMP, T., MCDONALD, J, and STUETZLE, W.
Surface Reconshuction from Unorganized Points. Roeeedings of SIGGRAPH 92.
In Computer Graphics 26@) (July 1992). pp. 71-78.

161 HOPPE. H., DEROSE, T.. DUCHAMP, T., MCDONALD, I., and STUETZLE, W.
Mesh Optimization. Proceedings of SIGGRAPH 93. In Computer Graphics Pro-
ceedings, Annual Conference Series. 1993, ACM SIGGRAPH. pp. 19-26.

[71 HOPPE, H. Progressive Meshes. Proceedings of SIGGRAPH %. In Computer
Graphics Roceedings, Annual Conference Series. 1996, ACM SIGGRAPH, pp.
99-108.

(81 HOPPE. H. View-Dependent Refinement of Progressive Meshes. Proceedings of
SIGGRAPH 97. In Computer Graphics Proceedings, Annual conference Series,
1997. ACM SIGGRAPH, pp. 189-198.

[9] LINDSTROM, P. and TURK, G. Fast and Memory Efficient Polygonal Simplifica-
tion. In IEEE Visualization '98 Roceedings, October 1998, pp. 279-286.

[lo] LINDSTROM, P. and TURK, G . Image-Driven Simplification. To appear in ACU
Tmnsactions on Graphics. Available as technical report GIT-GVU-99-49, Georgia
Institute of Technology, December 1999.

[1 I] LUBIN, J. A Visual Discrimination Model for Imaging System Design and Evalua-
tion. Vision Models for Torget Tracking and Recognition edited by Eli Rli, World
Sciendfic, New Jersey, 1195. pp. 245-283.

1121 LUEBKE, D. and ERIKSON, C. View-DependentSimplihcadon of Arbitrary Polyg-
onal Envimnments. Proceedings of SIGGRAPH 97. In Caputer Graphics Ro-
ceding% Annual Conference Series, 1997, ACM SIGGRAPH, pp. 199-208.

[I31 PRESS, W. H., TEUKOLSKY. S. A,, VEI'TERLING, W. T., ~ ~ F L A N N E R Y , B. P.
Numerical Recipes in C The An of Scientific Computing, Second Edition. Cam-
bridge University Ress. 1992, pp. 408-412.

[I41 RAMASUBRAMANIAN, M., PATTANAIK, S . N., and GREENBERG, D. P. A Per-
ceptually Based physical Enor Metric for Realistic Image Synthesis. F'rcceedings
of SIGGRAPH 99. In Computer Graphics Proceedings, Annual Conference Series,
1999, ACM SIGGRAPH, pp. 73-82.

1151 RONFARD, R. and ROSSIGNAC, 1. Full-Range Approximation of Triangulated
Polyhedra. Praeedings of Eumgraphics %. In Computer Graphics Fonun. 1S(3),
August 1996, pp. 61-76.

[161 ROSSIGNAC, J. and BORREL, P. Multi-Redution 3D Approximations for Render-
ing Complex Scenes. In Modeling in Computer Graphics, edited by 6. Falcidieno
and T. L. Kuuni, Springer-Verlag. 1993, pp. 455-465.

I171 SCHROEDER, W. I.,ZARGE. I. A., LORENS ENS EN, W. E.DeeimationofTriangle
Meshes. Proceedings of SIGGRAPH 92. In Computer Graphics 26(2) (July 1992).
pp. 65-70.

[l8] TURK, G. and BANKS, D. Image-Guided Streamline Placement. Roeeedings of
SIGGRAPH %. In Computer Graphics Roceedings, Annual Conference Series,
1996, ACM SIGGRAPH. pp. 453-460.

[191 XIA, I. and VARSHNEY. A. Dynamic View-DependentSimplification for Polygonal
Models. In IEEE VISUALIZATION '96 Roceedings, October 19%. pp. 327-334.

pp. 263-269.

7

,
r

p

1

